Part Number Hot Search : 
251944 EM291903 NJM2368V 2SC1383 GDM1604 TCRT9000 T24C128 012001
Product Description
Full Text Search
 

To Download IRFB9N65APBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  IRFB9N65APBF 06/16/04 www.irf.com 1 smps mosfet hexfet   power mosfet  switch mode power supply (smps)  uninterruptible power supply  high speed power switching  lead-free benefits applications  low gate charge qg results in simple drive requirement  improved gate, avalanche and dynamic dv/dt ruggedness  fully characterized capacitance and avalanche voltage and current v dss r ds(on) max i d 650v 0.93 ? 8.5a typical smps topologies  single transistor flyback notes   through  are on page 8  single transistor forward parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v 8.5 i d @ t c = 100c continuous drain current, v gs @ 10v 5.4 a i dm pulsed drain current  21 p d @t c = 25c power dissipation 167 w linear derating factor 1.3 w/c v gs gate-to-source voltage 30 v dv/dt peak diode recovery dv/dt  2.8 v/ns t j operating junction and -55 to + 150 t stg storage temperature range soldering temperature, for 10 seconds 300 (1.6mm from case ) c mounting torqe, 6-32 or m3 screw 10 lbfin (1.1nm) absolute maximum ratings to-220ab pd - 95416

 2 www.irf.com parameter min. typ. max. units conditions g fs forward transconductance 3.9 ??? ??? s v ds = 50v, i d = 3.1a  q g total gate charge ??? ??? 48 i d = 5.2a q gs gate-to-source charge ??? ??? 12 nc v ds = 400v q gd gate-to-drain ("miller") charge ??? ??? 19 v gs = 10v, see fig. 6 and 13  t d(on) turn-on delay time ??? 14 ??? v dd = 325v t r rise time ??? 20 ??? i d = 5.2a t d(off) turn-off delay time ??? 34 ??? r g = 9.1 ? t f fall time ??? 18 ??? r d = 62 ? ,see fig. 10  c iss input capacitance ??? 1417 ??? v gs = 0v c oss output capacitance ??? 177 ??? v ds = 25v c rss reverse transfer capacitance ??? 7.0 ??? pf ? = 1.0mhz, see fig. 5  c oss output capacitance ??? 1912 ??? v gs = 0v, v ds = 1.0v, ? = 1.0mhz c oss output capacitance ??? 48 ??? v gs = 0v, v ds = 520v, ? = 1.0mhz c oss eff. effective output capacitance ??? 84 ??? v gs = 0v, v ds = 0v to 520v  dynamic @ t j = 25c (unless otherwise specified) ns parameter typ. max. units e as single pulse avalanche energy  ??? 325 mj i ar avalanche current  ??? 5.2 a e ar repetitive avalanche energy  ??? 16 mj avalanche characteristics s d g parameter min. typ. max. units conditions i s continuous source current mosfet symbol (body diode) ??? ??? showing the i sm pulsed source current integral reverse (body diode)  ??? ??? p-n junction diode. v sd diode forward voltage ??? ??? 1.5 v t j = 25c, i s = 5.2a, v gs = 0v  t rr reverse recovery time ??? 493 739 ns t j = 25c, i f = 5.2a q rr reverse recoverycharge ??? 2.1 3.2 c di/dt = 100a/s   t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by l s +l d ) diode characteristics 5.2 21  parameter typ. max. units r jc junction-to-case ??? 0.75 r cs case-to-sink, flat, greased surface 0.50 ??? c/w r ja junction-to-ambient ??? 62 thermal resistance parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage 650 ??? ??? v v gs = 0v, i d = 250a ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 0.67 ??? v/c reference to 25c, i d = 1ma r ds(on) static drain-to-source on-resistance ??? ??? 0.93 ? v gs = 10v, i d = 5.1.a  v gs(th) gate threshold voltage 2.0 ??? 4.0 v v ds = v gs , i d = 250a ??? ??? 25 a v ds = 650v, v gs = 0v ??? ??? 250 v ds = 520v, v gs = 0v, t j = 125c gate-to-source forward leakage ??? ??? 100 v gs = 30v gate-to-source reverse leakage ??? ??? -100 na v gs = -30v static @ t j = 25c (unless otherwise specified) i gss i dss drain-to-source leakage current

 www.irf.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 0.1 1 10 100 0.1 1 10 100 20s pulse width t = 25 c j top bottom vgs 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v 4.5v v , drain-to-source voltage (v) i , drain-to-source current (a) ds d 4.5v 0.1 1 10 100 1 10 100 20s pulse width t = 150 c j top bottom vgs 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v 4.5v v , drain-to-source voltage (v) i , drain-to-source current (a) ds d 4.5v 0.1 1 10 100 4.0 5.0 6.0 7.0 8.0 9.0 v = 100v 20s pulse width ds v , gate-to-source voltage (v) i , drain-to-source current (a) gs d t = 25 c j t = 150 c j -60 -40 -20 0 20 40 60 80 100 120 140 160 0.0 0.5 1.0 1.5 2.0 2.5 3.0 t , junction temperature ( c) r , drain-to-source on resistance (normalized) j ds(on) v = i = gs d 10v 5.2a

 4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 0 10 20 30 40 50 0 4 8 12 16 20 q , total gate charge (nc) v , gate-to-source voltage (v) g gs for test circuit see figure i = d 13 5.2a v = 130v ds v = 325v ds v = 520v ds 0.1 1 10 100 0.2 0.4 0.6 0.8 1.0 1.2 v ,source-to-drain voltage (v) i , reverse drain current (a) sd sd v = 0 v gs t = 25 c j t = 150 c j 0.1 1 10 100 10 100 1000 1000 0 operation in this area limited by r ds(on) single pulse t t = 150 c = 25 c j c v , drain-to-source voltage (v) i , drain current (a) i , drain current (a) ds d 10us 100us 1ms 10ms  0 400 800 1200 1600 2000 1 10 100 1000 c, capacitance (pf) ds v , drain-to-source voltage (v) a v = 0v, f = 1mhz c = c + c , c shorted c = c c = c + c gs iss gs gd ds rss gd oss ds gd c iss c oss c rss

 www.irf.com 5 fig 10a. switching time test circuit v ds 9 0% 1 0% v gs t d(on) t r t d(off) t f fig 10b. switching time waveforms   
 1     0.1 %       
 + -   fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature 0.01 0.1 1 0.00001 0.0001 0.001 0.01 0.1 1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) 25 50 75 100 125 150 0.0 2.0 4.0 6.0 8.0 10.0 t , case temperature ( c) i , drain current (a) c d

 6 www.irf.com q g q gs q gd v g charge d.u.t. v d s i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -  fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v fig 12d. typical drain-to-source voltage vs. avalanche current 700 720 740 760 780 800 0123456 a dsav av i , avalanche current (a) v , avalanche voltage (v) 25 50 75 100 125 150 0 200 400 600 800 starting t , junction temperature ( c) e , single pulse avalanche energy (mj) j as i d top bottom 2.3a 3.3a 5.2a

 www.irf.com 7 p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop r e-applied v oltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period + - + + + - - - fig 14. for n-channel hexfet   power mosfets         
              ?   ?   ? !  "#$$ ? %  &""& ? '(!"  ? )"*  ? '+!" &"    

 8 www.irf.com lead assignments 1 - gate 2 - drain 3 - source 4 - drain - b - 1.32 (.052) 1.22 (.048) 3x 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 4.69 (.185) 4.20 (.165) 3x 0.93 (.037) 0.69 (.027) 4.06 (.160) 3.55 (.140) 1.15 (.045) min 6.47 (.255) 6.10 (.240) 3.78 (.149) 3.54 (.139) - a - 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) 15.24 (.600) 14.84 (.584) 14.09 (.555) 13.47 (.530) 3x 1.40 (.055) 1.15 (.045) 2.54 (.100) 2x 0.36 (.014) m b a m 4 1 2 3 notes: 1 dimensioning & tolerancing per ansi y14.5m, 1982. 3 outline conforms to jedec outline to-220ab. 2 controlling dimension : inch 4 heatsink & lead measurements do n ot include burrs. hexfet 1- gate 2- drain 3- source 4- drain lead assignments igbts, copac k 1- gate 2- collector 3- emitter 4- collector 

 dimensions are shown in millimeters (inches) 

  
 example: in the assembly line "c" t his is an ir f1010 lot code 1789 as s e mb le d on ww 19, 1997 part numbe r assembly lot code date code ye ar 7 = 1997 line c week 19 logo rectifier int e r nat ional note: "p" in assembly line position indicates "lead-free" data and specifications subject to change without notice. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 06/04   repetitive rating; pulse width limited by max. junction temperature. (see fig. 11)  i sd 5.2a, di/dt 90a/s, v dd v (br)dss , t j 150c 
  starting t j = 25c, l = 24mh r g = 25 ? , i as = 5.2a. (see figure 12)  pulse width 300s; duty cycle 2%.  c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss   uses irfib5n65a data and test conditions


▲Up To Search▲   

 
Price & Availability of IRFB9N65APBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X